Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Server-based Approach for Predictable GPU Access with Improved Analysis (1709.06613v2)

Published 19 Sep 2017 in cs.DC

Abstract: We propose a server-based approach to manage a general-purpose graphics processing unit (GPU) in a predictable and efficient manner. Our proposed approach introduces a GPU server that is a dedicated task to handle GPU requests from other tasks on their behalf. The GPU server ensures bounded time to access the GPU, and allows other tasks to suspend during their GPU computation to save CPU cycles. By doing so, we address the two major limitations of the existing real-time synchronization-based GPU management approach: busy waiting and long priority inversion. We have implemented a prototype of the server-based approach on a real embedded platform. This case study demonstrates the practicality and effectiveness of the server-based approach. Experimental results indicate that the server-based approach yields significant improvements in task schedulability over the existing synchronization-based approach in most practical settings. Although we focus on a GPU in this paper, the server-based approach can also be used for other types of computational accelerators.

Citations (16)

Summary

We haven't generated a summary for this paper yet.