Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Summary Of The Kernel Matrix, And How To Learn It Effectively Using Semidefinite Programming (1709.06557v1)

Published 18 Sep 2017 in stat.ML

Abstract: Kernel-based learning algorithms are widely used in machine learning for problems that make use of the similarity between object pairs. Such algorithms first embed all data points into an alternative space, where the inner product between object pairs specifies their distance in the embedding space. Applying kernel methods to partially labeled datasets is a classical challenge in this regard, requiring that the distances between unlabeled pairs must somehow be learnt using the labeled data. In this independent study, I will summarize the work of G. Lanckriet et al.'s work on "Learning the Kernel Matrix with Semidefinite Programming" used in support vector machines (SVM) algorithms for the transduction problem. Throughout the report, I have provide alternative explanations / derivations / analysis related to this work which is designed to ease the understanding of the original article.

Citations (3)

Summary

We haven't generated a summary for this paper yet.