Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying Retweetable Tweets with a Personalized Global Classifier (1709.06518v1)

Published 21 Aug 2017 in cs.SI

Abstract: In this paper we present a method to identify tweets that a user may find interesting enough to retweet. The method is based on a global, but personalized classifier, which is trained on data from several users, represented in terms of user-specific features. Thus, the method is trained on a sufficient volume of data, while also being able to make personalized decisions, i.e., the same post received by two different users may lead to different classification decisions. Experimenting with a collection of approx.\ 130K tweets received by 122 journalists, we train a logistic regression classifier, using a wide variety of features: the content of each tweet, its novelty, its text similarity to tweets previously posted or retweeted by the recipient or sender of the tweet, the network influence of the author and sender, and their past interactions. Our system obtains F1 approx. 0.9 using only 10 features and 5K training instances.

Citations (8)

Summary

We haven't generated a summary for this paper yet.