Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Leaf Extraction from Outdoor Images (1709.06437v1)

Published 19 Sep 2017 in cs.CV

Abstract: Automatic plant recognition and disease analysis may be streamlined by an image of a complete, isolated leaf as an initial input. Segmenting leaves from natural images is a hard problem. Cluttered and complex backgrounds: often composed of other leaves are commonplace. Furthermore, their appearance is highly dependent upon illumination and viewing perspective. In order to address these issues we propose a methodology which exploits the leaves venous systems in tandem with other low level features. Background and leaf markers are created using colour, intensity and texture. Two approaches are investigated: watershed and graph-cut and results compared. Primary-secondary vein detection and a protrusion-notch removal are applied to refine the extracted leaf. The efficacy of our approach is demonstrated against existing work.

Citations (15)

Summary

We haven't generated a summary for this paper yet.