Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bias Correction with Jackknife, Bootstrap, and Taylor Series (1709.06183v4)

Published 18 Sep 2017 in math.ST, cs.IT, cs.LG, math.IT, and stat.TH

Abstract: We analyze bias correction methods using jackknife, bootstrap, and Taylor series. We focus on the binomial model, and consider the problem of bias correction for estimating $f(p)$, where $f \in C[0,1]$ is arbitrary. We characterize the supremum norm of the bias of general jackknife and bootstrap estimators for any continuous functions, and demonstrate the in delete-$d$ jackknife, different values of $d$ may lead to drastically different behaviors in jackknife. We show that in the binomial model, iterating the bootstrap bias correction infinitely many times may lead to divergence of bias and variance, and demonstrate that the bias properties of the bootstrap bias corrected estimator after $r-1$ rounds are of the same order as that of the $r$-jackknife estimator if a bounded coefficients condition is satisfied.

Citations (21)

Summary

We haven't generated a summary for this paper yet.