Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A dissipativity theorem for p-dominant systems (1709.06155v2)

Published 18 Sep 2017 in cs.SY, math.DS, and math.OC

Abstract: We revisit the classical dissipativity theorem of linear-quadratic theory in a generalized framework where the quadratic storage is negative definite in a p-dimensional subspace and positive definite in a complementary subspace. The classical theory assumes p = 0 and provides an inter- connection theory for stability analysis, i.e. convergence to a zero dimensional attractor. The generalized theory is shown to provide an interconnection theory for p-dominance analysis, i.e. convergence to a p-dimensional dominant subspace. In turn, this property is the differential characterization of a generalized contraction property for nonlinear systems. The proposed generalization opens a novel avenue for the analysis of interconnected systems with low-dimensional attractors.

Citations (11)

Summary

We haven't generated a summary for this paper yet.