Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MacWilliams' extension theorem for infinite rings (1709.06070v3)

Published 18 Sep 2017 in math.RA, cs.IT, and math.IT

Abstract: Finite Frobenius rings have been characterized as precisely those finite rings satisfying the MacWilliams extension property, by work of Wood. In the present note we offer a generalization of this remarkable result to the realm of Artinian rings. Namely, we prove that a left Artinian ring has the left MacWilliams property if and only if it is left pseudo-injective and its finitary left socle embeds into the semisimple quotient. Providing a topological perspective on the MacWilliams property, we also show that the finitary left socle of a left Artinian ring embeds into the semisimple quotient if and only if it admits a finitarily left torsion-free character, if and only if the Pontryagin dual of the regular left module is almost monothetic. In conclusion, an Artinian ring has the MacWilliams property if and only if it is finitarily Frobenius, i.e., it is quasi-Frobenius and its finitary socle embeds into the semisimple quotient.

Citations (6)

Summary

We haven't generated a summary for this paper yet.