Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A convergent relaxation of the Douglas-Rachford algorithm (1709.05984v1)

Published 18 Sep 2017 in math.OC

Abstract: This paper proposes an algorithm for solving structured optimization problems, which covers both the backward-backward and the Douglas-Rachford algorithms as special cases, and analyzes its convergence. The set of fixed points of the algorithm is characterized in several cases. Convergence criteria of the algorithm in terms of general fixed point operators are established. When applying to nonconvex feasibility including the inconsistent case, we prove local linear convergence results under mild assumptions on regularity of individual sets and of the collection of sets which need not intersect. In this special case, we refine known linear convergence criteria for the Douglas-Rachford algorithm (DR). As a consequence, for feasibility with one of the sets being affine, we establish criteria for linear and sublinear convergence of convex combinations of the alternating projection and the DR methods. These results seem to be new. We also demonstrate the seemingly improved numerical performance of this algorithm compared to the RAAR algorithm for both consistent and inconsistent sparse feasibility problems.

Citations (12)

Summary

We haven't generated a summary for this paper yet.