Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the stability of flat complex vector bundles over parallelizable manifolds (1709.05951v2)

Published 18 Sep 2017 in math.DG and math.AG

Abstract: We investigate the flat holomorphic vector bundles over compact complex parallelizable manifolds $G / \Gamma$, where $G$ is a complex connected Lie group and $\Gamma$ is a cocompact lattice in it. The main result proved here is a structure theorem for flat holomorphic vector bundles $E_\rho$ associated to any irreducible representation $\rho : \Gamma \rightarrow \text{GL}(r,{\mathbb C})$. More precisely, we prove that $E_{\rho}$ is holomorphically isomorphic to a vector bundle of the form $E{\oplus n}$, where $E$ is a stable vector bundle. All the rational Chern classes of $E$ vanish, in particular, its degree is zero. We deduce a stability result for flat holomorphic vector bundles $E_{\rho}$ of rank 2 over $G/ \Gamma$. If an irreducible representation $\rho : \Gamma\rightarrow \text{GL}(2, \mathbb {C})$ satisfies the conditionmthat the induced homomorphism $\Gamma\rightarrow {\rm PGL}(2, {\mathbb C})$ does not extend to a homomorphism from $G$, then $E_{\rho}$ is proved to be stable.

Summary

We haven't generated a summary for this paper yet.