Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Deformations of Gorenstein-projective modules over Nakayama and triangular matrix algebras (1709.05391v5)

Published 15 Sep 2017 in math.RT

Abstract: Let $\mathbf{k}$ be a fixed field of arbitrary characteristic, and let $\Lambda$ be a finite dimensional $\mathbf{k}$-algebra. Assume that $V$ is a left $\Lambda$-module of finite dimension over $\mathbf{k}$. F. M. Bleher and the author previously proved that $V$ has a well-defined versal deformation ring $R(\Lambda,V)$ which is a local complete commutative Noetherian ring with residue field isomorphic to $\mathbf{k}$. Moreover, $R(\Lambda,V)$ is universal if the endomorphism ring of $V$ is isomorphic to $\mathbf{k}$. In this article we prove that if $\Lambda$ is a basic connected cycle Nakayama algebra without simple modules and $V$ is a Gorenstein-projective left $\Lambda$-module, then $R(\Lambda,V)$ is universal. Moreover, we also prove that the universal deformation rings $R(\Lambda,V)$ and $R(\Lambda, \Omega V)$ are isomorphic, where $\Omega V$ denotes the first syzygy of $V$. This result extends the one obtained by F. M. Bleher and D. J. Wackwitz concerning universal deformation rings of finitely generated modules over self-injective Nakayama algebras. In addition, we also prove the following result concerning versal deformation rings of finitely generated modules over triangular matrix finite dimensional algebras. Let $\Sigma=\begin{pmatrix} \Lambda & B\0& \Gamma\end{pmatrix}$ be a triangular matrix finite dimensional Gorenstein $\mathbf{k}$-algebra with $\Gamma$ of finite global dimension and $B$ projective as a left $\Lambda$-module. If $\begin{pmatrix} V\W\end{pmatrix}_f$ is a finitely generated Gorenstein-projective left $\Sigma$-module, then the versal deformation rings $R\left(\Sigma,\begin{pmatrix} V\W\end{pmatrix}_f\right)$ and $R(\Lambda,V)$ are isomorphic.

Summary

We haven't generated a summary for this paper yet.