Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convolution semigroups on locally compact quantum groups and noncommutative Dirichlet forms (1709.04873v2)

Published 14 Sep 2017 in math.OA, math.FA, math.PR, and math.QA

Abstract: The subject of this paper is the study of convolution semigroups of states on a locally compact quantum group, generalising classical families of distributions of a L\'{e}vy process on a locally compact group. In particular a definitive one-to-one correspondence between symmetric convolution semigroups of states and noncommutative Dirichlet forms satisfying the natural translation invariance property is established, extending earlier partial results and providing a powerful tool to analyse such semigroups. This is then applied to provide new characterisations of the Haagerup Property and Property (T) for locally compact quantum groups, and some examples are presented. The proofs of the main theorems require developing certain general results concerning Haagerup's $L{p}$-spaces.

Summary

We haven't generated a summary for this paper yet.