Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zeros of the deformed exponential function (1709.04357v1)

Published 13 Sep 2017 in math.CA, math-ph, math.CO, math.MP, and math.NT

Abstract: Let $f(x)=\sum_{n=0}{\infty}\frac{1}{n!}q{n(n-1)/2}xn$ ($0<q<1$) be the deformed exponential function. It is known that the zeros of $f(x)$ are real and form a negative decreasing sequence $(x_k)$ ($k\ge 1$). We investigate the complete asymptotic expansion for $x_{k}$ and prove that for any $n\ge1$, as $k\to \infty$, \begin{align*} x_k=-kq{1-k}\Big(1+\sum_{i=1}{n}C_i(q)k{-1-i}+o(k{-1-n})\Big), \end{align*} where $C_i(q)$ are some $q$ series which can be determined recursively. We show that each $C_{i}(q)\in \mathbb{Q}[A_0,A_1,A_2]$, where $A_{i}=\sum_{m=1}{\infty}mi\sigma(m)qm$ and $\sigma(m)$ denotes the sum of positive divisors of $m$. When writing $C_{i}$ as a polynomial in $A_0, A_1$ and $A_2$, we find explicit formulas for the coefficients of the linear terms by using Bernoulli numbers. Moreover, we also prove that $C_{i}(q)\in \mathbb{Q}[E_2,E_4,E_6]$, where $E_2$, $E_4$ and $E_6$ are the classical Eisenstein series of weight 2, 4 and 6, respectively.

Summary

We haven't generated a summary for this paper yet.