Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Sparse Global-Local Shrinkage Regression for Selection of Grouped Variables (1709.04333v3)

Published 13 Sep 2017 in stat.ME

Abstract: Most estimates for penalised linear regression can be viewed as posterior modes for an appropriate choice of prior distribution. Bayesian shrinkage methods, particularly the horseshoe estimator, have recently attracted a great deal of attention in the problem of estimating sparse, high-dimensional linear models. This paper extends these ideas, and presents a Bayesian grouped model with continuous global-local shrinkage priors to handle complex group hierarchies that include overlapping and multilevel group structures. As the posterior mean is never a sparse estimate of the linear model coefficients, we extend the recently proposed decoupled shrinkage and selection (DSS) technique to the problem of selecting groups of variables from posterior samples. To choose a final, sparse model, we also adapt generalised information criteria approaches to the DSS framework. To ensure that sparse groups, in which only a few predictors are active, can be effectively identified, we provide an alternative degrees of freedom estimator for sparse Bayesian linear models that takes into account the effects of shrinkage on the model coefficients. Simulations and real data analysis using our proposed method show promising performance in terms of correct identification of active and inactive groups, and prediction, in comparison with a Bayesian grouped slab-and-spike approach.

Citations (7)

Summary

We haven't generated a summary for this paper yet.