Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Uniquely Closable and Uniquely Typable Skeletons of Lambda Terms (1709.04302v1)

Published 13 Sep 2017 in cs.PL

Abstract: Uniquely closable skeletons of lambda terms are Motzkin-trees that predetermine the unique closed lambda term that can be obtained by labeling their leaves with de Bruijn indices. Likewise, uniquely typable skeletons of closed lambda terms predetermine the unique simply-typed lambda term that can be obtained by labeling their leaves with de Bruijn indices. We derive, through a sequence of logic program transformations, efficient code for their combinatorial generation and study their statistical properties. As a result, we obtain context-free grammars describing closable and uniquely closable skeletons of lambda terms, opening the door for their in-depth study with tools from analytic combinatorics. Our empirical study of the more difficult case of (uniquely) typable terms reveals some interesting open problems about their density and asymptotic behavior. As a connection between the two classes of terms, we also show that uniquely typable closed lambda term skeletons of size $3n+1$ are in a bijection with binary trees of size $n$.

Citations (9)

Summary

We haven't generated a summary for this paper yet.