Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A McKay correspondence for reflection groups (1709.04218v3)

Published 13 Sep 2017 in math.AG, math.AC, and math.RT

Abstract: We construct a noncommutative desingularization of the discriminant of a finite reflection group $G$ as a quotient of the skew group ring $A=S*G$. If $G$ is generated by order two reflections, then this quotient identifies with the endomorphism ring of the reflection arrangement $\mathcal{A}(G)$ viewed as a module over the coordinate ring $SG/(\Delta)$ of the discriminant of $G$. This yields, in particular, a correspondence between the nontrivial irreducible representations of $G$ to certain maximal Cohen--Macaulay modules over the coordinate ring $SG/(\Delta)$. These maximal Cohen--Macaulay modules are precisely the nonisomorphic direct summands of the coordinate ring of the reflection arrangement $\mathcal{A} (G)$ viewed as a module over $SG/(\Delta)$. We identify some of the corresponding matrix factorizations, namely the so-called logarithmic (co-)residues of the discriminant.

Summary

We haven't generated a summary for this paper yet.