Papers
Topics
Authors
Recent
2000 character limit reached

Probability Reversal and the Disjunction Effect in Reasoning Systems

Published 12 Sep 2017 in cs.AI | (1709.04029v1)

Abstract: Data based judgments go into artificial intelligence applications but they undergo paradoxical reversal when seemingly unnecessary additional data is provided. Examples of this are Simpson's reversal and the disjunction effect where the beliefs about the data change once it is presented or aggregated differently. Sometimes the significance of the difference can be evaluated using statistical tests such as Pearson's chi-squared or Fisher's exact test, but this may not be helpful in threshold-based decision systems that operate with incomplete information. To mitigate risks in the use of algorithms in decision-making, we consider the question of modeling of beliefs. We argue that evidence supports that beliefs are not classical statistical variables and they should, in the general case, be considered as superposition states of disjoint or polar outcomes. We analyze the disjunction effect from the perspective of the belief as a quantum vector.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.