Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Agnostic Learning by Refuting (1709.03871v2)

Published 12 Sep 2017 in cs.LG

Abstract: The sample complexity of learning a Boolean-valued function class is precisely characterized by its Rademacher complexity. This has little bearing, however, on the sample complexity of \emph{efficient} agnostic learning. We introduce \emph{refutation complexity}, a natural computational analog of Rademacher complexity of a Boolean concept class and show that it exactly characterizes the sample complexity of \emph{efficient} agnostic learning. Informally, refutation complexity of a class $\mathcal{C}$ is the minimum number of example-label pairs required to efficiently distinguish between the case that the labels correlate with the evaluation of some member of $\mathcal{C}$ (\emph{structure}) and the case where the labels are i.i.d. Rademacher random variables (\emph{noise}). The easy direction of this relationship was implicitly used in the recent framework for improper PAC learning lower bounds of Daniely and co-authors via connections to the hardness of refuting random constraint satisfaction problems. Our work can be seen as making the relationship between agnostic learning and refutation implicit in their work into an explicit equivalence. In a recent, independent work, Salil Vadhan discovered a similar relationship between refutation and PAC-learning in the realizable (i.e. noiseless) case.

Summary

We haven't generated a summary for this paper yet.