Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Additive energy forward curves in a Heath-Jarrow-Morton framework (1709.03310v3)

Published 11 Sep 2017 in q-fin.MF and math.PR

Abstract: One of the peculiarities of power and gas markets is the delivery mechanism of forward contracts. The seller of a futures contract commits to deliver, say, power, over a certain period, while the classical forward is a financial agreement settled on a maturity date. Our purpose is to design a Heath-Jarrow-Morton framework for an additive, mean-reverting, multicommodity market consisting of forward contracts of any delivery period. The main assumption is that forward prices can be represented as affine functions of a universal source of randomness. This allows us to completely characterize the models which prevent arbitrage opportunities: this boils down to finding a density between a risk-neutral measure $\mathbb{Q}$, such that the prices of traded assets like forward contracts are true $\mathbb{Q}$-martingales, and the real world probability measure $\mathbb{P}$, under which forward prices are mean-reverting. The Girsanov kernel for such a transformation turns out to be stochastic and unbounded in the diffusion part, while in the jump part the Girsanov kernel must be deterministic and bounded: thus, in this respect, we prove two results on the martingale property of stochastic exponentials. The first allows to validate measure changes made of two components: an Esscher-type density and a Girsanov transform with stochastic and unbounded kernel. The second uses a different approach and works for the case of continuous density. We apply this framework to two models: a generalized Lucia-Schwartz model and a cross-commodity cointegrated market.

Citations (2)

Summary

We haven't generated a summary for this paper yet.