Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toroidal orbifolds, destackification, and Kummer blowings up (1709.03206v1)

Published 11 Sep 2017 in math.AG

Abstract: We show that any toroidal DM stack $X$ with finite diagonalizable inertia possesses a maximal toroidal coarsening $X_{tcs}$ such that the morphism $X\to X_{tcs}$ is logarithmically smooth. Further, we use torification results of [AT17] to construct a destackification functor, a variant of the main result of Bergh [Ber17], on the category of such toroidal stacks $X$. Namely, we associate to $X$ a sequence of blowings up of toroidal stacks $\widetilde{\mathcal{F}}X:Y\longrightarrow X$ such that $Y{tc}$ coincides with the usual coarse moduli space $Y_{cs}$. In particular, this provides a toroidal resolution of the algebraic space $X_{cs}$. Both $X_{tcs}$ and $\widetilde{\mathcal{F}}_X$ are functorial with respect to strict inertia preserving morphisms $X'\to X$. Finally, we use coarsening morphisms to introduce a class of non-representable birational modifications of toroidal stacks called Kummer blowings up. These modifications, as well as our version of destackification, are used in our work on functorial toroidal resolution of singularities.

Summary

We haven't generated a summary for this paper yet.