2000 character limit reached
Classification of finite-dimensional Lie superalgebras whose even part is a three-dimensional simple Lie algebra over a field of characteristic not two or three (1709.02947v2)
Published 9 Sep 2017 in math.RT and math.RA
Abstract: Let $k$ be a field of characteristic not two or three. We classify up to isomorphism all finite-dimensional Lie superalgebras $\mathfrak{g}=\mathfrak{g}_0\oplus \mathfrak{g}_1$ over $k$, where $\mathfrak{g}_0$ is a three-dimensional simple Lie algebra. If $\mathcal{Z}(\mathfrak{g})$ denotes the centre of $\mathfrak{g}$, the result is the following: either $\lbrace \mathfrak{g}_1,\mathfrak{g}_1 \rbrace=\lbrace 0 \rbrace$ or $\mathfrak{g}_1=(\mathfrak{g}_0 \oplus k)\oplus \mathcal{Z}(\mathfrak{g})$ or $\mathfrak{g}\cong \mathfrak{osp}_k(1|2)\oplus \mathcal{Z}(\mathfrak{g})$.