Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification of finite-dimensional Lie superalgebras whose even part is a three-dimensional simple Lie algebra over a field of characteristic not two or three (1709.02947v2)

Published 9 Sep 2017 in math.RT and math.RA

Abstract: Let $k$ be a field of characteristic not two or three. We classify up to isomorphism all finite-dimensional Lie superalgebras $\mathfrak{g}=\mathfrak{g}_0\oplus \mathfrak{g}_1$ over $k$, where $\mathfrak{g}_0$ is a three-dimensional simple Lie algebra. If $\mathcal{Z}(\mathfrak{g})$ denotes the centre of $\mathfrak{g}$, the result is the following: either $\lbrace \mathfrak{g}_1,\mathfrak{g}_1 \rbrace=\lbrace 0 \rbrace$ or $\mathfrak{g}_1=(\mathfrak{g}_0 \oplus k)\oplus \mathcal{Z}(\mathfrak{g})$ or $\mathfrak{g}\cong \mathfrak{osp}_k(1|2)\oplus \mathcal{Z}(\mathfrak{g})$.

Summary

We haven't generated a summary for this paper yet.