Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Populations of Parameters (1709.02707v2)

Published 8 Sep 2017 in cs.LG

Abstract: Consider the following estimation problem: there are $n$ entities, each with an unknown parameter $p_i \in [0,1]$, and we observe $n$ independent random variables, $X_1,\ldots,X_n$, with $X_i \sim $ Binomial$(t, p_i)$. How accurately can one recover the "histogram" (i.e. cumulative density function) of the $p_i$'s? While the empirical estimates would recover the histogram to earth mover distance $\Theta(\frac{1}{\sqrt{t}})$ (equivalently, $\ell_1$ distance between the CDFs), we show that, provided $n$ is sufficiently large, we can achieve error $O(\frac{1}{t})$ which is information theoretically optimal. We also extend our results to the multi-dimensional parameter case, capturing settings where each member of the population has multiple associated parameters. Beyond the theoretical results, we demonstrate that the recovery algorithm performs well in practice on a variety of datasets, providing illuminating insights into several domains, including politics, sports analytics, and variation in the gender ratio of offspring.

Citations (2)

Summary

We haven't generated a summary for this paper yet.