Papers
Topics
Authors
Recent
Search
2000 character limit reached

Balanced Line Separators of Unit Disk Graphs

Published 8 Sep 2017 in cs.CG, cs.DM, and cs.DS | (1709.02579v2)

Abstract: We prove a geometric version of the graph separator theorem for the unit disk intersection graph: for any set of $n$ unit disks in the plane there exists a line $\ell$ such that $\ell$ intersects at most $O(\sqrt{(m+n)\log{n}})$ disks and each of the halfplanes determined by $\ell$ contains at most $2n/3$ unit disks from the set, where $m$ is the number of intersecting pairs of disks. We also show that an axis-parallel line intersecting $O(\sqrt{m+n})$ disks exists, but each halfplane may contain up to $4n/5$ disks. We give an almost tight lower bound (up to sublogarithmic factors) for our approach, and also show that no line-separator of sublinear size in $n$ exists when we look at disks of arbitrary radii, even when $m=0$. Proofs are constructive and suggest simple algorithms that run in linear time. Experimental evaluation has also been conducted, which shows that for random instances our method outperforms the method by Fox and Pach (whose separator has size $O(\sqrt{m})$).

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.