Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalizing Distance Covariance to Measure and Test Multivariate Mutual Dependence (1709.02532v5)

Published 8 Sep 2017 in math.ST, stat.AP, stat.CO, stat.ME, stat.ML, and stat.TH

Abstract: We propose three measures of mutual dependence between multiple random vectors. All the measures are zero if and only if the random vectors are mutually independent. The first measure generalizes distance covariance from pairwise dependence to mutual dependence, while the other two measures are sums of squared distance covariance. All the measures share similar properties and asymptotic distributions to distance covariance, and capture non-linear and non-monotone mutual dependence between the random vectors. Inspired by complete and incomplete V-statistics, we define the empirical measures and simplified empirical measures as a trade-off between the complexity and power when testing mutual independence. Implementation of the tests is demonstrated by both simulation results and real data examples.

Citations (31)

Summary

We haven't generated a summary for this paper yet.