Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-modal Conditional Attention Fusion for Dimensional Emotion Prediction (1709.02251v1)

Published 4 Sep 2017 in cs.CV, cs.LG, and cs.MM

Abstract: Continuous dimensional emotion prediction is a challenging task where the fusion of various modalities usually achieves state-of-the-art performance such as early fusion or late fusion. In this paper, we propose a novel multi-modal fusion strategy named conditional attention fusion, which can dynamically pay attention to different modalities at each time step. Long-short term memory recurrent neural networks (LSTM-RNN) is applied as the basic uni-modality model to capture long time dependencies. The weights assigned to different modalities are automatically decided by the current input features and recent history information rather than being fixed at any kinds of situation. Our experimental results on a benchmark dataset AVEC2015 show the effectiveness of our method which outperforms several common fusion strategies for valence prediction.

Citations (69)

Summary

We haven't generated a summary for this paper yet.