Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Distributed Linear Estimation With Observation Model Uncertainties

Published 7 Sep 2017 in cs.IT and math.IT | (1709.02040v1)

Abstract: We consider distributed estimation of a Gaussian source in a heterogenous bandwidth constrained sensor network, where the source is corrupted by independent multiplicative and additive observation noises, with incomplete statistical knowledge of the multiplicative noise. For multi-bit quantizers, we derive the closed-form mean-square-error (MSE) expression for the linear minimum MSE (LMMSE) estimator at the FC. For both error-free and erroneous communication channels, we propose several rate allocation methods named as longest root to leaf path, greedy and integer relaxation to (i) minimize the MSE given a network bandwidth constraint, and (ii) minimize the required network bandwidth given a target MSE. We also derive the Bayesian Cramer-Rao lower bound (CRLB) and compare the MSE performance of our proposed methods against the CRLB. Our results corroborate that, for low power multiplicative observation noises and adequate network bandwidth, the gaps between the MSE of our proposed methods and the CRLB are negligible, while the performance of other methods like individual rate allocation and uniform is not satisfactory.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.