Existence and stabilization results for a singular parabolic equation involving the fractional Laplacian (1709.01906v1)
Abstract: In this article, we study the following parabolic equation involving the fractional Laplacian with singular nonlinearity \begin{equation*} \quad (P_{t}s) \left{ \begin{split} \quad u_t + (-\Delta)s u &= u{-q} + f(x,u), \;u >0\; \text{in}\; (0,T) \times \Omega, u &= 0 \; \mbox{in}\; (0,T) \times (\mb Rn \setminus\Omega), \quad \quad \quad \quad u(0,x)&=u_0(x) \; \mbox{in} \; {\mb Rn}, \end{split} \quad \right. \end{equation*} where $\Omega$ is a bounded domain in $\mb{R}n$ with smooth boundary $\partial \Omega$, $n> 2s, \;s \in (0,1)$, $q>0$, ${q(2s-1)<(2s+1)}$, $u_0 \in L\infty(\Omega)\cap X_0(\Omega)$ and $T>0$. We suppose that the map $(x,y)\in \Omega \times \mb R+ \mapsto f(x,y)$ is a bounded below Carath\'eodary function, locally Lipschitz with respect to second variable and uniformly for $x \in \Omega$ it satisfies \begin{equation}\label{cond_on_f} { \limsup_{y \to +\infty} \frac{f(x,y)}{y}<\lambda_1s(\Omega)}, \end{equation} where $\la_1s(\Omega)$ is the first eigenvalue of $(-\Delta)s$ in $\Omega$ with homogeneous Dirichlet boundary condition in $\mathbb{R}n \setminus \Omega$. We prove the existence and uniqueness of weak solution to $(P_ts)$ on assuming $u_0$ satisfies an appropriate cone condition. We use the semi-discretization in time with implicit Euler method and study the stationary problem to prove our results. We also show additional regularity on the solution of $(P_ts)$ when we regularize our initial function $u_0$.