Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counting non-commensurable hyperbolic manifolds and a bound on homological torsion (1709.01873v1)

Published 6 Sep 2017 in math.GT

Abstract: We prove that the cardinality of the torsion subgroups in homology of a closed hyperbolic manifold of any dimension can be bounded by a doubly exponential function of its diameter. It would follow from a conjecture by Bergeron and Venkatesh that the order of growth in our bound is sharp. We also determine how the number of non-commensurable closed hyperbolic manifolds of dimension at least 3 and bounded diameter grows. The lower bound implies that the fraction of arithmetic manifolds tends to zero as the diameter goes up.

Summary

We haven't generated a summary for this paper yet.