Papers
Topics
Authors
Recent
2000 character limit reached

Vaisman solvmanifolds and relations with other geometric structures

Published 5 Sep 2017 in math.DG | (1709.01567v2)

Abstract: We characterize unimodular solvable Lie algebras with Vaisman structures in terms of K\"ahler flat Lie algebras equipped with a suitable derivation. Using this characterization we obtain algebraic restrictions for the existence of Vaisman structures and we establish some relations with other geometric notions, such as Sasakian, coK\"ahler and left-symmetric algebra structures. Applying these results we construct families of Lie algebras and Lie groups admitting a Vaisman structure and we show the existence of lattices in some of these families, obtaining in this way many examples of new solvmanifolds equipped with invariant Vaisman structures.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.