Vaisman solvmanifolds and relations with other geometric structures
Abstract: We characterize unimodular solvable Lie algebras with Vaisman structures in terms of K\"ahler flat Lie algebras equipped with a suitable derivation. Using this characterization we obtain algebraic restrictions for the existence of Vaisman structures and we establish some relations with other geometric notions, such as Sasakian, coK\"ahler and left-symmetric algebra structures. Applying these results we construct families of Lie algebras and Lie groups admitting a Vaisman structure and we show the existence of lattices in some of these families, obtaining in this way many examples of new solvmanifolds equipped with invariant Vaisman structures.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.