Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detection of Moving Object in Dynamic Background Using Gaussian Max-Pooling and Segmentation Constrained RPCA (1709.00657v1)

Published 3 Sep 2017 in cs.CV

Abstract: Due to its efficiency and stability, Robust Principal Component Analysis (RPCA) has been emerging as a promising tool for moving object detection. Unfortunately, existing RPCA based methods assume static or quasi-static background, and thereby they may have trouble in coping with the background scenes that exhibit a persistent dynamic behavior. In this work, we shall introduce two techniques to fill in the gap. First, instead of using the raw pixel-value as features that are brittle in the presence of dynamic background, we devise a so-called Gaussian max-pooling operator to estimate a "stable-value" for each pixel. Those stable-values are robust to various background changes and can therefore distinguish effectively the foreground objects from the background. Then, to obtain more accurate results, we further propose a Segmentation Constrained RPCA (SC-RPCA) model, which incorporates the temporal and spatial continuity in images into RPCA. The inference process of SC-RPCA is a group sparsity constrained nuclear norm minimization problem, which is convex and easy to solve. Experimental results on seven videos from the CDCNET 2014 database show the superior performance of the proposed method.

Citations (8)

Summary

We haven't generated a summary for this paper yet.