Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Iteratively Linearized Reweighted Alternating Direction Method of Multipliers for a Class of Nonconvex Problems (1709.00483v5)

Published 1 Sep 2017 in cs.NA, cs.CV, math.NA, math.OC, and stat.ML

Abstract: In this paper, we consider solving a class of nonconvex and nonsmooth problems frequently appearing in signal processing and machine learning research. The traditional alternating direction method of multipliers encounters troubles in both mathematics and computations in solving the nonconvex and nonsmooth subproblem. In view of this, we propose a reweighted alternating direction method of multipliers. In this algorithm, all subproblems are convex and easy to solve. We also provide several guarantees for the convergence and prove that the algorithm globally converges to a critical point of an auxiliary function with the help of the Kurdyka-{\L}ojasiewicz property. Several numerical results are presented to demonstrate the efficiency of the proposed algorithm.

Citations (28)

Summary

We haven't generated a summary for this paper yet.