Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unbiased Hamiltonian Monte Carlo with couplings (1709.00404v3)

Published 1 Sep 2017 in stat.CO

Abstract: We propose a methodology to parallelize Hamiltonian Monte Carlo estimators. Our approach constructs a pair of Hamiltonian Monte Carlo chains that are coupled in such a way that they meet exactly after some random number of iterations. These chains can then be combined so that resulting estimators are unbiased. This allows us to produce independent replicates in parallel and average them to obtain estimators that are consistent in the limit of the number of replicates, instead of the usual limit of the number of Markov chain iterations. We investigate the scalability of our coupling in high dimensions on a toy example. The choice of algorithmic parameters and the efficiency of our proposed methodology are then illustrated on a logistic regression with 300 covariates, and a log-Gaussian Cox point processes model with low to fine grained discretizations.

Summary

We haven't generated a summary for this paper yet.