Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Task Allocation (1709.00358v1)

Published 1 Sep 2017 in cs.GT

Abstract: The problem of allocating tasks to workers is of long standing fundamental importance. Examples of this include the classical problem of assigning computing tasks to nodes in a distributed computing environment, as well as the more recent problem of crowdsourcing where a broad array of tasks are slated to be completed by human workers. Extensive research into this problem generally addresses important issues such as uncertainty and, in crowdsourcing, incentives. However, the problem of adversarial tampering with the task allocation process has not received as much attention. We are concerned with a particular adversarial setting in task allocation where an attacker may target a specific worker in order to prevent the tasks assigned to this worker from being completed. We consider two attack models: one in which the adversary observes only the allocation policy (which may be randomized), and the second in which the attacker observes the actual allocation decision. For the case when all tasks are homogeneous, we provide polynomial-time algorithms for both settings. When tasks are heterogeneous, however, we show the adversarial allocation problem to be NP-Hard, and present algorithms for solving it when the defender is restricted to assign only a single worker per task. Our experiments show, surprisingly, that the difference between the two attack models is minimal: deterministic allocation can achieve nearly as much utility as randomized.

Summary

We haven't generated a summary for this paper yet.