Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gaussian approximation of maxima of Wiener functionals and its application to high-frequency data (1709.00353v5)

Published 1 Sep 2017 in math.ST, math.PR, and stat.TH

Abstract: This paper establishes an upper bound for the Kolmogorov distance between the maximum of a high-dimensional vector of smooth Wiener functionals and the maximum of a Gaussian random vector. As a special case, we show that the maximum of multiple Wiener-It^o integrals with common orders is well-approximated by its Gaussian analog in terms of the Kolmogorov distance if their covariance matrices are close to each other and the maximum of the fourth cumulants of the multiple Wiener-It^o integrals is close to zero. This may be viewed as a new kind of fourth moment phenomenon, which has attracted considerable attention in the recent studies of probability. This type of Gaussian approximation result has many potential applications to statistics. To illustrate this point, we present two statistical applications in high-frequency financial econometrics: One is the hypothesis testing problem for the absence of lead-lag effects and the other is the construction of uniform confidence bands for spot volatility.

Citations (15)

Summary

We haven't generated a summary for this paper yet.