Papers
Topics
Authors
Recent
2000 character limit reached

Structured Linearization of Discrete Mechanical Systems for Analysis and Optimal Control

Published 31 Aug 2017 in math.OC and cs.RO | (1709.00341v1)

Abstract: Variational integrators are well-suited for simulation of mechanical systems because they preserve mechanical quantities about a system such as momentum, or its change if external forcing is involved, and holonomic constraints. While they are not energy-preserving they do exhibit long-time stable energy behavior. However, variational integrators often simulate mechanical system dynamics by solving an implicit difference equation at each time step, one that is moreover expressed purely in terms of configurations at different time steps. This paper formulates the first- and second-order linearizations of a variational integrator in a manner that is amenable to control analysis and synthesis, creating a bridge between existing analysis and optimal control tools for discrete dynamic systems and variational integrators for mechanical systems in generalized coordinates with forcing and holonomic constraints. The forced pendulum is used to illustrate the technique. A second example solves the discrete LQR problem to find a locally stabilizing controller for a 40 DOF system with 6 constraints.

Citations (32)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.