Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Multi-item Auctions with (or without) Samples (1709.00228v1)

Published 1 Sep 2017 in cs.GT, cs.DS, and cs.LG

Abstract: We provide algorithms that learn simple auctions whose revenue is approximately optimal in multi-item multi-bidder settings, for a wide range of valuations including unit-demand, additive, constrained additive, XOS, and subadditive. We obtain our learning results in two settings. The first is the commonly studied setting where sample access to the bidders' distributions over valuations is given, for both regular distributions and arbitrary distributions with bounded support. Our algorithms require polynomially many samples in the number of items and bidders. The second is a more general max-min learning setting that we introduce, where we are given "approximate distributions," and we seek to compute an auction whose revenue is approximately optimal simultaneously for all "true distributions" that are close to the given ones. These results are more general in that they imply the sample-based results, and are also applicable in settings where we have no sample access to the underlying distributions but have estimated them indirectly via market research or by observation of previously run, potentially non-truthful auctions. Our results hold for valuation distributions satisfying the standard (and necessary) independence-across-items property. They also generalize and improve upon recent works, which have provided algorithms that learn approximately optimal auctions in more restricted settings with additive, subadditive and unit-demand valuations using sample access to distributions. We generalize these results to the complete unit-demand, additive, and XOS setting, to i.i.d. subadditive bidders, and to the max-min setting. Our results are enabled by new uniform convergence bounds for hypotheses classes under product measures. Our bounds result in exponential savings in sample complexity compared to bounds derived by bounding the VC dimension, and are of independent interest.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yang Cai (64 papers)
  2. Constantinos Daskalakis (111 papers)
Citations (63)

Summary

We haven't generated a summary for this paper yet.