Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RANK: Large-Scale Inference with Graphical Nonlinear Knockoffs (1709.00092v1)

Published 31 Aug 2017 in math.ST, stat.ME, stat.ML, and stat.TH

Abstract: Power and reproducibility are key to enabling refined scientific discoveries in contemporary big data applications with general high-dimensional nonlinear models. In this paper, we provide theoretical foundations on the power and robustness for the model-free knockoffs procedure introduced recently in Cand`{e}s, Fan, Janson and Lv (2016) in high-dimensional setting when the covariate distribution is characterized by Gaussian graphical model. We establish that under mild regularity conditions, the power of the oracle knockoffs procedure with known covariate distribution in high-dimensional linear models is asymptotically one as sample size goes to infinity. When moving away from the ideal case, we suggest the modified model-free knockoffs method called graphical nonlinear knockoffs (RANK) to accommodate the unknown covariate distribution. We provide theoretical justifications on the robustness of our modified procedure by showing that the false discovery rate (FDR) is asymptotically controlled at the target level and the power is asymptotically one with the estimated covariate distribution. To the best of our knowledge, this is the first formal theoretical result on the power for the knockoffs procedure. Simulation results demonstrate that compared to existing approaches, our method performs competitively in both FDR control and power. A real data set is analyzed to further assess the performance of the suggested knockoffs procedure.

Citations (68)

Summary

We haven't generated a summary for this paper yet.