Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the pointwise Bishop--Phelps--Bollobás property for operators (1709.00032v2)

Published 31 Aug 2017 in math.FA

Abstract: We study approximation of operators between Banach spaces $X$ and $Y$ that nearly attain their norms in a given point by operators that attain their norms at the same point. When such approximations exist, we say that the pair $(X, Y)$ has the pointwise Bishop-Phelps-Bollob\'as property (pointwise BPB property for short). In this paper we mostly concentrate on those $X$, called universal pointwise BPB domain spaces, such that $(X, Y)$ possesses pointwise BPB property for every $Y$, and on those $Y$, called universal pointwise BPB range spaces, such that $(X, Y)$ enjoys pointwise BPB property for every uniformly smooth $X$. We show that every universal pointwise BPB domain space is uniformly convex and that $L_p(\mu)$ spaces fail to have this property when $p>2$. For universal pointwise BPB range space, we show that every simultaneously uniformly convex and uniformly smooth Banach space fails it if its dimension is greater than one. We also discuss a version of the pointwise BPB property for compact operators.

Summary

We haven't generated a summary for this paper yet.