Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Design and Analysis of the NIPS 2016 Review Process (1708.09794v2)

Published 31 Aug 2017 in cs.DL, cs.LG, cs.SI, and stat.ML

Abstract: Neural Information Processing Systems (NIPS) is a top-tier annual conference in machine learning. The 2016 edition of the conference comprised more than 2,400 paper submissions, 3,000 reviewers, and 8,000 attendees. This represents a growth of nearly 40% in terms of submissions, 96% in terms of reviewers, and over 100% in terms of attendees as compared to the previous year. The massive scale as well as rapid growth of the conference calls for a thorough quality assessment of the peer-review process and novel means of improvement. In this paper, we analyze several aspects of the data collected during the review process, including an experiment investigating the efficacy of collecting ordinal rankings from reviewers. Our goal is to check the soundness of the review process, and provide insights that may be useful in the design of the review process of subsequent conferences.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Nihar B. Shah (73 papers)
  2. Behzad Tabibian (6 papers)
  3. Krikamol Muandet (58 papers)
  4. Isabelle Guyon (55 papers)
  5. Ulrike von Luxburg (51 papers)
Citations (96)