Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integral representation for Bessel's functions of the first kind and Neumann series (1708.09715v1)

Published 31 Aug 2017 in math.CA, math-ph, and math.MP

Abstract: A Fourier-type integral representation for Bessel's function of the first kind and complex order is obtained by using the Gegenbuaer extension of Poisson's integral representation for the Bessel function along with a trigonometric integral representation of Gegenbauer's polynomials. This representation lets us express various functions related to the incomplete gamma function in series of Bessel's functions. Neumann series of Bessel functions are also considered and a new closed-form integral representation for this class of series is given. The density function of this representation is simply the analytic function on the unit circle associated with the sequence of coefficients of the Neumann series. Examples of new closed-form integral representations of special functions are also presented.

Summary

We haven't generated a summary for this paper yet.