Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A comment on Stein's unbiased risk estimate for reduced rank estimators (1708.09657v1)

Published 31 Aug 2017 in math.ST and stat.TH

Abstract: In the framework of matrix valued observables with low rank means, Stein's unbiased risk estimate (SURE) can be useful for risk estimation and for tuning the amount of shrinkage towards low rank matrices. This was demonstrated by Cand`es et al. (2013) for singular value soft thresholding, which is a Lipschitz continuous estimator. SURE provides an unbiased risk estimate for an estimator whenever the differentiability requirements for Stein's lemma are satisfied. Lipschitz continuity of the estimator is sufficient, but it is emphasized that differentiability Lebesgue almost everywhere isn't. The reduced rank estimator, which gives the best approximation of the observation with a fixed rank, is an example of a discontinuous estimator for which Stein's lemma actually applies. This was observed by Mukherjee et al. (2015), but the proof was incomplete. This brief note gives a sufficient condition for Stein's lemma to hold for estimators with discontinuities, which is then shown to be fulfilled for a class of spectral function estimators including the reduced rank estimator. Singular value hard thresholding does, however, not satisfy the condition, and Stein's lemma does not apply to this estimator.

Summary

We haven't generated a summary for this paper yet.