2000 character limit reached
Quermassintegral preserving curvature flow in Hyperbolic space
Published 31 Aug 2017 in math.DG and math.AP | (1708.09583v2)
Abstract: We consider the quermassintegral preserving flow of closed \emph{h-convex} hypersurfaces in hyperbolic space with the speed given by any positive power of a smooth symmetric, strictly increasing, and homogeneous of degree one function $f$ of the principal curvatures which is inverse concave and has dual $f_*$ approaching zero on the boundary of the positive cone. We prove that if the initial hypersurface is \emph{h-convex}, then the solution of the flow becomes strictly \emph{h-convex} for $t>0$, the flow exists for all time and converges to a geodesic sphere exponentially in the smooth topology.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.