Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quermassintegral preserving curvature flow in Hyperbolic space (1708.09583v2)

Published 31 Aug 2017 in math.DG and math.AP

Abstract: We consider the quermassintegral preserving flow of closed \emph{h-convex} hypersurfaces in hyperbolic space with the speed given by any positive power of a smooth symmetric, strictly increasing, and homogeneous of degree one function $f$ of the principal curvatures which is inverse concave and has dual $f_*$ approaching zero on the boundary of the positive cone. We prove that if the initial hypersurface is \emph{h-convex}, then the solution of the flow becomes strictly \emph{h-convex} for $t>0$, the flow exists for all time and converges to a geodesic sphere exponentially in the smooth topology.

Summary

We haven't generated a summary for this paper yet.