Papers
Topics
Authors
Recent
2000 character limit reached

Quermassintegral preserving curvature flow in Hyperbolic space

Published 31 Aug 2017 in math.DG and math.AP | (1708.09583v2)

Abstract: We consider the quermassintegral preserving flow of closed \emph{h-convex} hypersurfaces in hyperbolic space with the speed given by any positive power of a smooth symmetric, strictly increasing, and homogeneous of degree one function $f$ of the principal curvatures which is inverse concave and has dual $f_*$ approaching zero on the boundary of the positive cone. We prove that if the initial hypersurface is \emph{h-convex}, then the solution of the flow becomes strictly \emph{h-convex} for $t>0$, the flow exists for all time and converges to a geodesic sphere exponentially in the smooth topology.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.