Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Invariant Riemannian Geometric Representations Using Deep Nets (1708.09485v2)

Published 30 Aug 2017 in cs.CV

Abstract: Non-Euclidean constraints are inherent in many kinds of data in computer vision and machine learning, typically as a result of specific invariance requirements that need to be respected during high-level inference. Often, these geometric constraints can be expressed in the language of Riemannian geometry, where conventional vector space machine learning does not apply directly. The central question this paper deals with is: How does one train deep neural nets whose final outputs are elements on a Riemannian manifold? To answer this, we propose a general framework for manifold-aware training of deep neural networks -- we utilize tangent spaces and exponential maps in order to convert the proposed problem into a form that allows us to bring current advances in deep learning to bear upon this problem. We describe two specific applications to demonstrate this approach: prediction of probability distributions for multi-class image classification, and prediction of illumination-invariant subspaces from a single face-image via regression on the Grassmannian. These applications show the generality of the proposed framework, and result in improved performance over baselines that ignore the geometry of the output space. In addition to solving this specific problem, we believe this paper opens new lines of enquiry centered on the implications of Riemannian geometry on deep architectures.

Citations (12)

Summary

We haven't generated a summary for this paper yet.