Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Tutte Polynomial of Symmetric Hyperplane Arrangements

Published 29 Aug 2017 in math.CO | (1708.09296v2)

Abstract: The Tutte polynomial is originally a bivariate polynomial which enumerates the colorings of a graph and of its dual graph. Ardila extended in 2007 the definition of the Tutte polynomial on the real hyperplane arrangements. He particularly computed the Tutte polynomials of the hyperplane arrangements associated to the classical Weyl groups. Those associated to the exceptional Weyl groups were computed by De Concini and Procesi one year later. This article has two objectives: On one side, we extend the Tutte polynomial computing to the complex hyperplane arrangements. On the other side, we introduce a wider class of hyperplane arrangements which is that of the symmetric hyperplane arrangements. Computing the Tutte polynomial of a symmetric hyperplane arrangement permits us to deduce the Tutte polynomials of some hyperplane arrangements, particularly of those associated to the imprimitive reflection groups.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.