Hardy Spaces ($0<p<\infty$) over Lipschitz Domains (1708.08762v1)
Abstract: Let $0<p<\infty$, $\Gamma$ be a Lipschitz curve on the complex plane~$\mathbb{C}$ and $\Omega_+$ is the domain above $\Gamma$, we define Hardy space $H^p(\Omega_+)$ as the set of analytic functions $F$ satisfying $\sup_{\tau\>0}(\int_{\Gamma} |F(\zeta+\mathrm{i}\tau)|p |\,\mathrm{d}\zeta|){\frac1p}< \infty$. We denote the conformal mapping from $\mathbb{C}+$ onto $\Omega+$ as $\Phi$, and prove that, $Hp(\Omega_+)$ is isomorphic to $Hp(\mathbb{C}_+)$, the classical Hardy space on the upper half plane~$\mathbb{C}+$, under the mapping $T\colon F\to F(\Phi)\cdot (\Phi'){\frac1p}$. Besides, $T$ and $T{-1}$ are both bounded. We also prove that if $F(w)\in Hp(\Omega+)$, then $F(w)$ has non-tangential boundary limit $F(\zeta)$ a.e. on $\Gamma$, and, if $1\leqslant p< \infty$, $F(w)$ is the Cauchy integral on $\Gamma$ of $F(\zeta)$.