Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrated Speech Enhancement Method Based on Weighted Prediction Error and DNN for Dereverberation and Denoising (1708.08251v1)

Published 28 Aug 2017 in cs.SD

Abstract: Both reverberation and additive noises degrade the speech quality and intelligibility. Weighted prediction error (WPE) method performs well on the dereverberation but with limitations. First, WPE doesn't consider the influence of the additive noise which degrades the performance of dereverberation. Second, it relies on a time-consuming iterative process, and there is no guarantee or a widely accepted criterion on its convergence. In this paper, we integrate deep neural network (DNN) into WPE for dereverberation and denoising. DNN is used to suppress the background noise to meet the noise-free assumption of WPE. Meanwhile, DNN is applied to directly predict spectral variance of the target speech to make the WPE work without iteration. The experimental results show that the proposed method has a significant improvement in speech quality and runs fast.

Citations (7)

Summary

We haven't generated a summary for this paper yet.