Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Merge decompositions, two-sided Krohn-Rhodes, and aperiodic pointlikes (1708.08118v1)

Published 27 Aug 2017 in math.GR, cs.FL, and math.RA

Abstract: This paper provides short proofs of two fundamental theorems of finite semigroup theory whose previous proofs were significantly longer, namely the two-sided Krohn-Rhodes decomposition theorem and Henckell's aperiodic pointlike theorem, using a new algebraic technique that we call the merge decomposition. A prototypical application of this technique decomposes a semigroup $T$ into a two-sided semidirect product whose components are built from two subsemigroups $T_1,T_2$, which together generate $T$, and the subsemigroup generated by their setwise product $T_1T_2$. In this sense we decompose $T$ by merging the subsemigroups $T_1$ and $T_2$. More generally, our technique merges semigroup homomorphisms from free semigroups.

Citations (9)

Summary

We haven't generated a summary for this paper yet.