Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Navigation Objects Extraction for Better Content Structure Understanding (1708.07940v1)

Published 26 Aug 2017 in cs.AI and cs.IR

Abstract: Existing works for extracting navigation objects from webpages focus on navigation menus, so as to reveal the information architecture of the site. However, web 2.0 sites such as social networks, e-commerce portals etc. are making the understanding of the content structure in a web site increasingly difficult. Dynamic and personalized elements such as top stories, recommended list in a webpage are vital to the understanding of the dynamic nature of web 2.0 sites. To better understand the content structure in web 2.0 sites, in this paper we propose a new extraction method for navigation objects in a webpage. Our method will extract not only the static navigation menus, but also the dynamic and personalized page-specific navigation lists. Since the navigation objects in a webpage naturally come in blocks, we first cluster hyperlinks into different blocks by exploiting spatial locations of hyperlinks, the hierarchical structure of the DOM-tree and the hyperlink density. Then we identify navigation objects from those blocks using the SVM classifier with novel features such as anchor text lengths etc. Experiments on real-world data sets with webpages from various domains and styles verified the effectiveness of our method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Kui Zhao (26 papers)
  2. Bangpeng Li (1 paper)
  3. Zilun Peng (4 papers)
  4. Jiajun Bu (52 papers)
  5. Can Wang (156 papers)
Citations (2)