Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Blame: Localizing Novice Type Errors with Data-Driven Diagnosis (1708.07583v2)

Published 25 Aug 2017 in cs.PL

Abstract: Localizing type errors is challenging in languages with global type inference, as the type checker must make assumptions about what the programmer intended to do. We introduce Nate, a data-driven approach to error localization based on supervised learning. Nate analyzes a large corpus of training data -- pairs of ill-typed programs and their "fixed" versions -- to automatically learn a model of where the error is most likely to be found. Given a new ill-typed program, Nate executes the model to generate a list of potential blame assignments ranked by likelihood. We evaluate Nate by comparing its precision to the state of the art on a set of over 5,000 ill-typed OCaml programs drawn from two instances of an introductory programming course. We show that when the top-ranked blame assignment is considered, Nate's data-driven model is able to correctly predict the exact sub-expression that should be changed 72% of the time, 28 points higher than OCaml and 16 points higher than the state-of-the-art SHErrLoc tool. Furthermore, Nate's accuracy surpasses 85% when we consider the top two locations and reaches 91% if we consider the top three.

Citations (31)

Summary

We haven't generated a summary for this paper yet.