Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bitwise Source Separation on Hashed Spectra: An Efficient Posterior Estimation Scheme Using Partial Rank Order Metrics (1708.06750v3)

Published 22 Aug 2017 in cs.SD

Abstract: This paper proposes an efficient bitwise solution to the single-channel source separation task. Most dictionary-based source separation algorithms rely on iterative update rules during the run time, which becomes computationally costly especially when we employ an overcomplete dictionary and sparse encoding that tend to give better separation results. To avoid such cost we propose a bitwise scheme on hashed spectra that leads to an efficient posterior probability calculation. For each source, the algorithm uses a partial rank order metric to extract robust features that form a binarized dictionary of hashed spectra. Then, for a mixture spectrum, its hash code is compared with each source's hashed dictionary in one pass. This simple voting-based dictionary search allows a fast and iteration-free estimation of ratio masking at each bin of a signal spectrogram. We verify that the proposed BitWise Source Separation (BWSS) algorithm produces sensible source separation results for the single-channel speech denoising task, with 6-8 dB mean SDR. To our knowledge, this is the first dictionary based algorithm for this task that is completely iteration-free in both training and testing.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Lijiang Guo (4 papers)
  2. Minje Kim (53 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.