Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Nonparametric Bayesian Inference For X-Ray Transforms

Published 21 Aug 2017 in math.ST, math.AP, stat.ME, and stat.TH | (1708.06332v2)

Abstract: We consider the statistical inverse problem of recovering a function $f: M \to \mathbb R$, where $M$ is a smooth compact Riemannian manifold with boundary, from measurements of general $X$-ray transforms $I_a(f)$ of $f$, corrupted by additive Gaussian noise. For $M$ equal to the unit disk with flat' geometry and $a=0$ this reduces to the standard Radon transform, but our general setting allows for anisotropic media $M$ and can further model localattenuation' effects -- both highly relevant in practical imaging problems such as SPECT tomography. We propose a nonparametric Bayesian inference approach based on standard Gaussian process priors for $f$. The posterior reconstruction of $f$ corresponds to a Tikhonov regulariser with a reproducing kernel Hilbert space norm penalty that does not require the calculation of the singular value decomposition of the forward operator $I_a$. We prove Bernstein-von Mises theorems that entail that posterior-based inferences such as credible sets are valid and optimal from a frequentist point of view for a large family of semi-parametric aspects of $f$. In particular we derive the asymptotic distribution of smooth linear functionals of the Tikhonov regulariser, which is shown to attain the semi-parametric Cram\'er-Rao information bound. The proofs rely on an invertibility result for the `Fisher information' operator $I_a*I_a$ between suitable function spaces, a result of independent interest that relies on techniques from microlocal analysis. We illustrate the performance of the proposed method via simulations in various settings.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.