Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Nonparametric Bayesian Inference For X-Ray Transforms (1708.06332v2)

Published 21 Aug 2017 in math.ST, math.AP, stat.ME, and stat.TH

Abstract: We consider the statistical inverse problem of recovering a function $f: M \to \mathbb R$, where $M$ is a smooth compact Riemannian manifold with boundary, from measurements of general $X$-ray transforms $I_a(f)$ of $f$, corrupted by additive Gaussian noise. For $M$ equal to the unit disk with flat' geometry and $a=0$ this reduces to the standard Radon transform, but our general setting allows for anisotropic media $M$ and can further model localattenuation' effects -- both highly relevant in practical imaging problems such as SPECT tomography. We propose a nonparametric Bayesian inference approach based on standard Gaussian process priors for $f$. The posterior reconstruction of $f$ corresponds to a Tikhonov regulariser with a reproducing kernel Hilbert space norm penalty that does not require the calculation of the singular value decomposition of the forward operator $I_a$. We prove Bernstein-von Mises theorems that entail that posterior-based inferences such as credible sets are valid and optimal from a frequentist point of view for a large family of semi-parametric aspects of $f$. In particular we derive the asymptotic distribution of smooth linear functionals of the Tikhonov regulariser, which is shown to attain the semi-parametric Cram\'er-Rao information bound. The proofs rely on an invertibility result for the `Fisher information' operator $I_a*I_a$ between suitable function spaces, a result of independent interest that relies on techniques from microlocal analysis. We illustrate the performance of the proposed method via simulations in various settings.

Summary

We haven't generated a summary for this paper yet.